A Non-Parametric Classification Strategy for Remotely Sensed Images using Both Spectral and Textural Information
نویسندگان
چکیده
A classification strategy which does not require a priori assumptions about the statistical distribution of training pixels in each class is proposed. This method uses an indicator kriging approach in feature space to classify remotely sensed images incorporating both spectral and textural information of bands. Texture information is used only in cases where spectral information is not sufficient to resolve the assignment of the pixel to a class. Application of the proposed methodology on a remotely sensed natural scene shows an improvement in the overall classification accuracy with respect to the case when the scenes are classified by the traditional supervised Gaussian maximum likelihood classification (GMLC) method using either spectral band only or using both spectral and textural bands. A marked improvement in classification accuracy is obtained particularly for the classes for which the GMLC’s assumption of multivariate normal distribution of training pixels in a class fails miserably.
منابع مشابه
Spatial Techniques for Image Classification∗
The constant increase in the amount and resolution of remotely sensed imagery necessitates development of intelligent systems for automatic processing and classification. We describe a Bayesian framework that uses spatial information for classification of high-resolution images. First, spectral and textural features are extracted for each pixel. Then, these features are quantized and are used t...
متن کاملFeature Selection for Classification of Hyperspectral Remotely Sensed data using NSGA-II
This paper summarizes the implementation and performance of Nondominated Sorting Genetic algorithm (NSGA-II) [2] for feature selection of remotely sensed hyperspectral imagery. Two step processes have been followed. In first step, a feature subset is selected with optimum spectral and texture information content resulting in a smaller space to be searched in the next step. In the second step, a...
متن کاملA Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data
Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملTwo New Methods of Boundary Correction for Classifying Textural Images
With the growth of technology, supervising systems are increasingly replacing humans in military, transportation, medical, spatial, and other industries. Among these systems are machine vision systems which are based on image processing and analysis. One of the important tasks of image processing is classification of images into desirable categories for the identification of objects or their sp...
متن کامل